Share Email Print

Proceedings Paper

Silicon micro sensors as integrated readout platform for colorimetric and fluorescence based opto-chemical transducers
Author(s): Matthias Will; Tomas Martan; Olaf Brodersen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Opto-chemical transducer almost offers unlimited possibilities for detection of physical quantities. New technologies and research show a steady increasing of publications in the area of sensoric principles. For transfer to real world applications the optical response has to be converted into an electrical signal. An exceptional opto chemical transducer loses the attraction if complex and expensive instruments for analysis are requires. Therefore, the readout system must be very compact and producible for low cost. In this presentation, the technology platform as a solution for these problems will be presented. We combine micro structuring of silicon, photodiode fabrication, chip in chip mounting and novel assembly technologies for creation of a flexible sensor platform. This flexible combination of technologies allows fabricating a family of planar optical remission sensors. With variation of design and modifications, we are able to detect colorimetric, fluorescent properties of an sensitive layer attached on the sensor surface. In our sensor with typical size of 6mm x 6mm x 1mm different emitting sources based on LED's or laser diodes, multiple detection cannels for the remitted light and also measurement of temperature are included. Based on these sensors we proof the concept by demonstrating sensors for oxygen, carbon dioxide and ammonia based on colorimetric and fluorescent changes in the transducer layer. In both configurations, LED's irradiated the sensitive polymer layer through a transparent substrate. The absorption or fluorescence properties of dyed polymer are changed by the chemical reaction and light response is detected by PIN diodes. The signal shift is analyzed by using a computer controlled evaluation board of own construction. Accuracy and reliability of the remission sensor system were verified and the whole sensor system was experimentally tested in the range of concentrations from 50 ppm up to 100 000 ppm for CO2 and O2 Furthermore, we develop concepts to use the sensor also for interferometric detection of layer properties and the combination with capacitive structures on the surface. This allows detecting of thickness or refractive index variation of layers in future.

Paper Details

Date Published: 11 October 2011
PDF: 6 pages
Proc. SPIE 8306, Photonics, Devices, and Systems V, 83060B (11 October 2011); doi: 10.1117/12.912798
Show Author Affiliations
Matthias Will, CiS-Institute for Micro Sensors GmbH (Germany)
Tomas Martan, Institute of Photonics and Electronics (Czech Republic)
Olaf Brodersen, CiS-Institute for Micro Sensors GmbH (Germany)

Published in SPIE Proceedings Vol. 8306:
Photonics, Devices, and Systems V
Pavel Tománek; Dagmar Senderáková; Petr Páta, Editor(s)

© SPIE. Terms of Use
Back to Top