Share Email Print
cover

Proceedings Paper

Fiber laser beam combining and power scaling progress: Air Force Research Laboratory Laser Division
Author(s): T. J. Wagner
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Numerous achievements have been made recently by researchers in the areas of fiber laser beam combining and power scaling. Industry has demonstrated multi-kW power from a single fiber amplifier, and a US national laboratory has coherently combined eight fiber amplifiers totaling 4 kW. This paper will survey the recent literature and then focus on fiber laser results from the Laser Division, Directed Energy Directorate of the Air Force Research Laboratory (AFRL). Progress has been made in the power scaling of narrow-linewidth fiber amplifiers, and we are transitioning lessons learned from PCF power scaling into monolithic architectures. SBS suppression has been achieved using a variety of techniques to lower the Brillioun gain, including acoustically tailored fiber, laser gain competition resulting from multitone seeding and inducing a longitudinal thermal gradient. We recently demonstrated a 32-channel coherent beam combination result using AFRL's phaselocking technique and are focused on exploring the limitations of this technique including linewidth broadening, kW-induced phase nonlinearities and auto-tuning methods for large channel counts. Additionally, we have recently refurbished our High Energy Laser Joint Technology Office-sponsored 16-amplifier fiber testbed to meet strict PER, spatial drift, power stability and beam quality requirements.

Paper Details

Date Published: 15 February 2012
PDF: 9 pages
Proc. SPIE 8237, Fiber Lasers IX: Technology, Systems, and Applications, 823718 (15 February 2012); doi: 10.1117/12.912154
Show Author Affiliations
T. J. Wagner, Air Force Research Lab. (United States)


Published in SPIE Proceedings Vol. 8237:
Fiber Lasers IX: Technology, Systems, and Applications
Eric C. Honea; Sami T. Hendow, Editor(s)

© SPIE. Terms of Use
Back to Top