Share Email Print
cover

Proceedings Paper

Optoacoustic 3D visualization of changes in physiological properties of mouse tissues from live to postmortem
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Using the method of 3D optoacoustic tomography, we studied changes in tissues of the whole body of nude mice as the changes manifested themselves from live to postmortem. The studies provided the necessary baseline for optoacoustic imaging of necrotizing tissue, acute and chronic hypoxia, and reperfusion. They also establish a new optoacoustic model of early postmortem conditions of the whole mouse body. Animals were scanned in a 37°C water bath using a three-dimensional optoacoustic tomography system previously shown to provide high contrast maps of vasculature and organs based on changes in the optical absorbance. The scans were performed right before, 5 minutes after, 2 hours and 1 day after a lethal injection of KCl. The near-infrared laser wavelength of 765 nm was used to evaluate physiological features of postmortem changes. Our data showed that optoacoustic imaging is well suited for visualization of both live and postmortem tissues. The images revealed changes of optical properties in mouse organs and tissues. Specifically, we observed improvements in contrast of the vascular network and organs after the death of the animal. We associated these with reduced optical scattering, loss of motion artifacts, and blood coagulation.

Paper Details

Date Published: 23 February 2012
PDF: 7 pages
Proc. SPIE 8223, Photons Plus Ultrasound: Imaging and Sensing 2012, 82230K (23 February 2012); doi: 10.1117/12.910975
Show Author Affiliations
Richard Su, TomoWave Labs., Inc. (United States)
Sergey A. Ermiliov, TomoWave Labs., Inc. (United States)
Anton V. Liopo, TomoWave Labs., Inc. (United States)
Alexander A. Oraevsky, TomoWave Labs., Inc. (United States)


Published in SPIE Proceedings Vol. 8223:
Photons Plus Ultrasound: Imaging and Sensing 2012
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top