Share Email Print

Proceedings Paper

The effect of energy weighting on x-ray imaging based on photon counting detector: a Monte Carlo simulation
Author(s): Seung-Wan Lee; Yu-Na Choi; Hyo-Min Cho; Young-Jin Lee; Hyun-Ju Ryu; Hee-Joung Kim
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Photon counting detector based on semiconductor materials is a promising imaging modality and provides many benefits for x-ray imaging compared with conventional detectors. This detector is able to measure the x-ray photon energy deposited by each event and provide the x-ray spectrum formed by detected photon. Recently, photon counting detectors have been developed for x-ray imaging. However, there has not been done many works for developing the novel x-ray imaging techniques and evaluating the image quality in x-ray system based on photon counting detectors. In this study, we simulated computed tomography (CT) images using projection-based and image-based energy weighting techniques and evaluate the effect of energy weighting in CT images. We designed the x-ray CT system equipped with cadmium telluride (CdTe) detector operating in the photon counting mode using Geant4 Application for Tomographic Emission (GATE) simulation. A micro focus X-ray source was modeled to reduce the flux of photons and minimize the spectral distortion. The phantom had a cylindrical shape of 30 mm diameter and consisted of ploymethylmethacrylate (PMMA) which includes the blood (1.06 g/cm3), iodine, and gadolinium (50 mg/cm3). The reconstructed images of phantom were acquired with projection-based and image-based energy weighting techniques. To evaluate the image quality, the contrast-to-noise ratio (CNR) is calculated as a function of the number of energy-bins. The CNR of both images acquired with energy weighting techniques were improved compared with those of integrating and counting images and increased as a function of the number of energy-bins. When the number of energy-bins was increased, the CNR in the image-based energy weighting image is higher than the projection-based energy weighting image. The results of this study show that the energy weighting techniques based on the photon counting detector can improve the image quality and the number of energy-bins used for generating the image is important.

Paper Details

Date Published: 9 March 2012
PDF: 6 pages
Proc. SPIE 8313, Medical Imaging 2012: Physics of Medical Imaging, 83135M (9 March 2012); doi: 10.1117/12.910845
Show Author Affiliations
Seung-Wan Lee, Yonsei Univ. (Korea, Republic of)
Yu-Na Choi, Yonsei Univ. (Korea, Republic of)
Hyo-Min Cho, Yonsei Univ. (Korea, Republic of)
Young-Jin Lee, Yonsei Univ. (Korea, Republic of)
Hyun-Ju Ryu, Yonsei Univ. (Korea, Republic of)
Hee-Joung Kim, Yonsei Univ. (Korea, Republic of)

Published in SPIE Proceedings Vol. 8313:
Medical Imaging 2012: Physics of Medical Imaging
Norbert J. Pelc; Robert M. Nishikawa; Bruce R. Whiting, Editor(s)

© SPIE. Terms of Use
Back to Top