Share Email Print
cover

Proceedings Paper

Is diagnostic accuracy for detecting pulmonary nodules in chest CT reduced after a long day of reading?
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Radiologists are reading more cases with more images, especially in CT and MRI and thus working longer hours than ever before. There have been concerns raised regarding fatigue and whether it impacts diagnostic accuracy. This study measured the impact of reader visual fatigue by assessing symptoms, visual strain via dark focus of accommodation, and diagnostic accuracy. Twenty radiologists and 20 radiology residents were given two diagnostic performance tests searching CT chest sequences for a solitary pulmonary nodule before (rested) and after (tired) a day of clinical reading. 10 cases used free search and navigation, and the other 100 cases used preset scrolling speed and duration. Subjects filled out the Swedish Occupational Fatigue Inventory (SOFI) and the oculomotor strain subscale of the Simulator Sickness Questionnaire (SSQ) before each session. Accuracy was measured using ROC techniques. Using Swensson's technique yields an ROC area = 0.86 rested vs. 0.83 tired, p (one-tailed) = 0.09. Using Swensson's LROC technique yields an area = 0.73 rested vs. 0.66 tired, p (one-tailed) = 0.09. Using Swensson's Loc Accuracy technique yields an area = 0.77 rested vs. 0.72 tired, p (one-tailed) = 0.13). Subjective measures of fatigue increased significantly from early to late reading. To date, the results support our findings with static images and detection of bone fractures. Radiologists at the end of a long work day experience greater levels of measurable visual fatigue or strain, contributing to a decrease in diagnostic accuracy. The decrease in accuracy was not as great however as with static images.

Paper Details

Date Published: 22 February 2012
PDF: 6 pages
Proc. SPIE 8318, Medical Imaging 2012: Image Perception, Observer Performance, and Technology Assessment, 83180X (22 February 2012); doi: 10.1117/12.910748
Show Author Affiliations
Elizabeth A. Krupinski, The Univ. of Arizona (United States)
Kevin S. Berbaum, The Univ. of Iowa (United States)
Robert Caldwell, The Univ. of Iowa (United States)
Kevin M. Schartz, The Univ. of Iowa (United States)


Published in SPIE Proceedings Vol. 8318:
Medical Imaging 2012: Image Perception, Observer Performance, and Technology Assessment
Craig K. Abbey; Claudia R. Mello-Thoms, Editor(s)

© SPIE. Terms of Use
Back to Top