Share Email Print

Proceedings Paper

Fiber-array based optogenetic prosthetic system for stimulation therapy
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Recent advent of optogenetics has enabled activation of genetically-targeted neuronal cells using low intensity blue light with high temporal precision. Since blue light is attenuated rapidly due to scattering and absorption in neural tissue, optogenetic treatment of neurological disorders may require stimulation of specific cell types in multiple regions of the brain. Further, restoration of certain neural functions (vision, and auditory etc) requires accurate spatio-temporal stimulation patterns rather than just precise temporal stimulation. In order to activate multiple regions of the central nervous system in 3D, here, we report development of an optogenetic prosthetic comprising of array of fibers coupled to independently-controllable LEDs. This design avoids direct contact of LEDs with the brain tissue and thus does not require electrical and heat isolation, which can non-specifically stimulate and damage the local brain regions. The intensity, frequency, and duty cycle of light pulses from each fiber in the array was controlled independently using an inhouse developed LabView based program interfaced with a microcontroller driving the individual LEDs. While the temporal profile of the light pulses was controlled by varying the current driving the LED, the beam profile emanating from each fiber tip could be sculpted by microfabrication of the fiber tip. The fiber array was used to stimulate neurons, expressing channelrhodopsin-2, in different locations within the brain or retina. Control of neural activity in the mice cortex, using the fiber-array based prosthetic, is evaluated from recordings made with multi-electrode array (MEA). We also report construction of a μLED array based prosthetic for spatio-temporal stimulation of cortex.

Paper Details

Date Published: 22 February 2012
PDF: 7 pages
Proc. SPIE 8207, Photonic Therapeutics and Diagnostics VIII, 82076E (22 February 2012); doi: 10.1117/12.910036
Show Author Affiliations
Ling Gu, The Univ. of Texas at Arlington (United States)
Chris Cote, The Univ. of Texas at Arlington (United States)
Hector Tejeda, The Univ. of Texas at Arlington (United States)
Samarendra Mohanty, The Univ. of Texas at Arlington (United States)

Published in SPIE Proceedings Vol. 8207:
Photonic Therapeutics and Diagnostics VIII
Anita Mahadevan-Jansen; Andreas Mandelis; Kenton W. Gregory M.D.; Nikiforos Kollias; Hyun Wook Kang; Henry Hirschberg M.D.; Melissa J. Suter; Brian Jet-Fei Wong M.D.; Justus F. Ilgner M.D.; Stephen Lam; Bodo E. Knudsen M.D.; Steen Madsen; E. Duco Jansen; Bernard Choi; Guillermo J. Tearney M.D.; Laura Marcu; Haishan Zeng; Matthew Brenner; Krzysztof Izdebski, Editor(s)

© SPIE. Terms of Use
Back to Top