Share Email Print
cover

Proceedings Paper

Ultrasonic encoding of diffused light: from optical imaging to light focusing in turbid media
Author(s): Xiao Xu; Puxiang Lai; Honglin Liu; Lihong V. Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In optical scattering media such as biological tissue, light propagation is randomized by multiple scattering. Beyond one transport mean free path, where photon propagation is in the diffusive regime, direct light focusing becomes infeasible. The resulting loss of light localization poses serious challenge to optical imaging in thick scattering media. Ultrasound modulated optical tomography (UOT) combines high optical contrast and good ultrasonic resolution, and is therefore an ideal imaging modality for soft biological tissue. A variety of detection techniques have been developed in UOT in an effort to discriminate the ultrasonically encoded diffused light as the imaging signal. We developed a photorefractive crystal based detection system, which has the ability to image both the optical and acoustic properties of biological tissues. With the improved photorefractive crystal based detection, tissue-mimicking phantom samples as thick as 9.4 cm can be imaged. We further exploit the virtual source concept in UOT and combine it with optical time reversal to achieve diffusive light focusing into scattering media. Experimental implementation of this new technology is presented.

Paper Details

Date Published: 23 February 2012
PDF: 6 pages
Proc. SPIE 8223, Photons Plus Ultrasound: Imaging and Sensing 2012, 822324 (23 February 2012); doi: 10.1117/12.909916
Show Author Affiliations
Xiao Xu, Washington Univ. in St. Louis (United States)
Puxiang Lai, Washington Univ. in St. Louis (United States)
Honglin Liu, Washington Univ. in St. Louis (United States)
Lihong V. Wang, Washington Univ. in St. Louis (United States)


Published in SPIE Proceedings Vol. 8223:
Photons Plus Ultrasound: Imaging and Sensing 2012
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top