Share Email Print
cover

Proceedings Paper

Raman spectroscopy of bone metastasis
Author(s): Karen A. Esmonde-White; Joseph Sottnik; Michael Morris; Evan Keller
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

Paper Details

Date Published: 17 February 2012
PDF: 6 pages
Proc. SPIE 8207, Photonic Therapeutics and Diagnostics VIII, 82076P (17 February 2012); doi: 10.1117/12.909327
Show Author Affiliations
Karen A. Esmonde-White, Univ. of Michigan Medical School (United States)
Joseph Sottnik, Univ. of Michigan Medical School (United States)
Michael Morris, Univ. of Michigan (United States)
Evan Keller, Univ. of Michigan Medical School (United States)


Published in SPIE Proceedings Vol. 8207:
Photonic Therapeutics and Diagnostics VIII
Anita Mahadevan-Jansen; Andreas Mandelis; Kenton W. Gregory; Nikiforos Kollias; Hyun Wook Kang; Henry Hirschberg; Melissa J. Suter; Brian Jet-Fei Wong; Justus F. Ilgner; Stephen Lam; Bodo E. Knudsen; Steen Madsen; E. Duco Jansen; Bernard Choi; Guillermo J. Tearney; Laura Marcu; Haishan Zeng; Matthew Brenner; Krzysztof Izdebski, Editor(s)

© SPIE. Terms of Use
Back to Top