Share Email Print
cover

Proceedings Paper

Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics
Author(s): P. Andreakou; M. Brossard; M. Bernechea; G. Konstantatos; P. Lagoudakis
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Semiconductor Quantum Dots (QDs) are promising materials for photovoltaic applications because they can be engineered to absorb light from visible to near infrared and single absorbed photons can generate multiple excitons. However, these materials suffer from low carrier mobility, which severely limits the prospects of efficient charge extraction and carrier transport. We take advantage of the optical properties of QDs and overcome their drawback by using a hybrid photovoltaic device. This photovoltaic configuration exploits the absorption of solar photons in the QDs and the transfer of excitons from the QDs to a silicon p-n junction. We study the Resonance Energy Transfer (RET) mechanism to inject excitons from the QDs into the depletion layer of a silicon p-n junction. Lead sulphide (PbS) nanocrystals are deposited onto the silicon substrate and the efficiency of Resonance Energy Transfer (RET) from the PbS nanoparticles to bulk silicon is investigated. We study the efficiency of this transfer channel between the PbS nanocrystals and silicon by varying their separation distance. These results demonstrate RET from colloidal quantum dots to bulk silicon. Temperature measurements are also presented and show that the RET efficiency is as high as 44% at room temperature. Such a hybrid photovoltaic device makes a potentially inexpensive scheme for achieving highefficiency and low-cost solar-cell platforms.

Paper Details

Date Published: 21 February 2012
PDF: 6 pages
Proc. SPIE 8256, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices, 82561L (21 February 2012); doi: 10.1117/12.908357
Show Author Affiliations
P. Andreakou, Univ. of Southampton (United Kingdom)
M. Brossard, Univ. of Southampton (United Kingdom)
M. Bernechea, ICFO - Institut de Ciències Fotòniques (Spain)
G. Konstantatos, ICFO - Institut de Ciències Fotòniques (Spain)
P. Lagoudakis, Univ. of Southampton (United Kingdom)


Published in SPIE Proceedings Vol. 8256:
Physics, Simulation, and Photonic Engineering of Photovoltaic Devices
Alexandre Freundlich; Jean-Francois F. Guillemoles, Editor(s)

© SPIE. Terms of Use
Back to Top