Share Email Print
cover

Proceedings Paper

Quantitative comparison of wavelength dependence on penetration depth and imaging contrast for ultrahigh-resolution optical coherence tomography using supercontinuum sources at five wavelength regions
Author(s): S. Ishida; N. Nishizawa
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optical coherence tomography (OCT) is a non invasive optical imaging technology for micron-scale cross-sectional imaging of biological tissue and materials. We have been investigating ultrahigh resolution optical coherence tomography (UHR-OCT) using fiber based supercontinuum sources. Although ultrahigh longitudinal resolution was achieved in several center wavelength regions, its low penetration depth is a serious limitation for other applications. To realize ultrahigh resolution and deep penetration depth simultaneously, it is necessary to choose the proper wavelength to maximize the light penetration and enhance the image contrast at deeper depths. Recently, we have demonstrated the wavelength dependence of penetration depth and imaging contrast for ultrahigh resolution OCT at 0.8 μm, 1.3 μm, and 1.7 μm wavelength ranges. In this paper, additionally we used SC sources at 1.06 μm and 1.55 μm, and we have investigated the wavelength dependence of UHR-OCT at five wavelength regions. The image contrast and penetration depth have been discussed in terms of the scattering coefficient and water absorption of samples. Almost the same optical characteristics in longitudinal and lateral resolution, sensitivity, and incident optical power at all wavelength regions were demonstrated. We confirmed the enhancement of image contrast and decreased ambiguity of deeper epithelioid structure at longer wavelength region.

Paper Details

Date Published: 30 January 2012
PDF: 6 pages
Proc. SPIE 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI, 821330 (30 January 2012); doi: 10.1117/12.907996
Show Author Affiliations
S. Ishida, Nagoya Univ. (Japan)
N. Nishizawa, Nagoya Univ. (Japan)


Published in SPIE Proceedings Vol. 8213:
Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI
Joseph A. Izatt; James G. Fujimoto; Valery V. Tuchin, Editor(s)

© SPIE. Terms of Use
Back to Top