Share Email Print
cover

Proceedings Paper

Functional photoacoustic microscopy of pH
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

pH is a tightly regulated indicator of metabolic activity. In mammalian systems, imbalance of pH regulation may result from or result in serious illness. Even though the regulation system of pH is very robust, tissue pH can be altered in many diseases such as cancer, osteoporosis and diabetes mellitus. Traditional high-resolution optical imaging techniques, such as confocal microscopy, routinely image pH in cells and tissues using pH sensitive fluorescent dyes, which change their fluorescence properties with the surrounding pH. Since strong optical scattering in biological tissue blurs images at greater depths, high-resolution pH imaging is limited to penetration depths of 1mm. Here, we report photoacoustic microscopy (PAM) of commercially available pH-sensitive fluorescent dye in tissue phantoms. Using both opticalresolution photoacoustic microscopy (OR-PAM), and acoustic resolution photoacoustic microscopy (AR-PAM), we explored the possibility of recovering the pH values in tissue phantoms. In this paper, we demonstrate that PAM was capable of recovering pH values up to a depth of 2 mm, greater than possible with other forms of optical microscopy.

Paper Details

Date Published: 23 February 2012
PDF: 6 pages
Proc. SPIE 8223, Photons Plus Ultrasound: Imaging and Sensing 2012, 82230N (23 February 2012); doi: 10.1117/12.907685
Show Author Affiliations
M. Rameez Chatni, Washington Univ. in St. Louis (United States)
Junjie Yao, Washington Univ. in St. Louis (United States)
Amos Danielli, Washington Univ. in St. Louis (United States)
Christopher P. Favazza, Washington Univ. in St. Louis (United States)
Konstantin I. Maslov, Washington Univ. in St. Louis (United States)
Lihong V. Wang, Washington Univ. in St. Louis (United States)


Published in SPIE Proceedings Vol. 8223:
Photons Plus Ultrasound: Imaging and Sensing 2012
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top