Share Email Print

Proceedings Paper

Ultrafast ultrasound and photoacoustic co-registered imaging system based on FPGA parallel processing
Author(s): Umar Alqasemi; Hai Li; Guangqian Yuan; Andres Aguirre; Quing Zhu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Co-registered Ultrasound and Photoacoustic images provide complimentary structure and functional information for cancer diagnosis and assessment of therapy response. In SPIE Photonics West 2011, we reported a system that acquires from 64 channels and displays up to 1 frame per second (fps) ultrasound pulse-echo images, 5 fps photoacoustic images, and 0.5 fps co-registered images. In this year, we report an upgraded system which acquires from 128 channels and displays up to 15 fps co-registered ultrasound and photoacoustic images limited by our laser pulse repetition rate. The system architecture is novel and it provides real-time co-registration of images, the ability of acquiring the channel RF data for both modalities, and the flexibility of adjusting every parameter involved in the imaging process for both modalities. The digital signal processor board is upgraded to an FPGA-based PCIe board that collects the data from the acquisition modules and transfers them to the PC memory at 2.5GT/s rate through an x8 DDR PCIe bus running at 100MHz clock frequency. The modules FPGA code is also upgraded to form a beam line in 90 microseconds and to communicate through ultrafast differential tracks with the PCIe board. Furthermore, the printed circuit board (PCB) design of the system was adjusted to provide a maximum of 80dB signal-to-noise ratio at 60dB gain, which is comparable to some commercial ultrasound machines. The real-time system allows capturing co-registered US/PAT images free of motion artifacts and also provides ultrafast dynamic information when a contrast agent is used. The system is built for clinical use to assist the diagnosis of ovarian cancer. However, the hardware is still under testing and evaluation stage, experimental and clinical results will be reported later.

Paper Details

Date Published: 23 February 2012
PDF: 7 pages
Proc. SPIE 8223, Photons Plus Ultrasound: Imaging and Sensing 2012, 82232U (23 February 2012); doi: 10.1117/12.907583
Show Author Affiliations
Umar Alqasemi, Univ. of Connecticut (United States)
Hai Li, Univ. of Connecticut (United States)
Guangqian Yuan, Univ. of Connecticut (United States)
Andres Aguirre, Univ. of Connecticut (United States)
Quing Zhu, Univ. of Connecticut (United States)

Published in SPIE Proceedings Vol. 8223:
Photons Plus Ultrasound: Imaging and Sensing 2012
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top