Share Email Print
cover

Proceedings Paper

Fast self-assembly kinetics of alkanethiols on gold nanoparticles: simulation and characterization by localized surface plasmon resonance spectroscopy
Author(s): Sasan Asiaei; Ryan C. Denomme; Chelsea Marr; Patricia M.. Nieva; Mathilakath M. Vijayan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This study demonstrates improved kinetics for the formation of self-assembled monolayers (SAMs) of alkanethiols on gold nanoparticle substrates. A computational model was developed to predict SAM growth kinetics. Based on the predictions from the model, SAMs of 11-mercaptoundecanoic acid (11-MUA) and 1-octanethiol (1-OT) were formed by incubation of gold nanoparticle chips in an ethanolic 10 mM solution within 20 min. The performance of this novel rapid SAM formation protocol was compared with a conventional 24 hour incubation protocol. Binding capacity of the alkanethiol SAM was investigated for a 20 min incubation protocol using biotin-streptavidin. For this purpose, the SAM loaded gold nanoparticle chips were modified with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) to allow attachment of EZ-Link amine PEG3 biotin to the 11-MUA molecules. Binding reactions were monitored in real time using localized surface plasmon resonance (LSPR) spectroscopy. The resulting LSPR absorbance peak shift was comparable to the experimental results for biotin-streptavidin reported in literature. Results of this study suggest that formation of a high quality alkanethiol SAM within 20 min on gold nanoparticles surfaces is possible and could greatly reduce the time and cost compared to conventional 24 h incubation protocols.

Paper Details

Date Published: 14 February 2012
PDF: 6 pages
Proc. SPIE 8251, Microfluidics, BioMEMS, and Medical Microsystems X, 825107 (14 February 2012); doi: 10.1117/12.907370
Show Author Affiliations
Sasan Asiaei, Univ. of Waterloo (Canada)
Ryan C. Denomme, Univ. of Waterloo (Canada)
Chelsea Marr, Univ. of Waterloo (Canada)
Patricia M.. Nieva, Univ. of Waterloo (Canada)
Mathilakath M. Vijayan, Univ. of Waterloo (Canada)


Published in SPIE Proceedings Vol. 8251:
Microfluidics, BioMEMS, and Medical Microsystems X
Holger Becker; Bonnie L. Gray, Editor(s)

© SPIE. Terms of Use
Back to Top