Share Email Print
cover

Proceedings Paper

Optimization of parameters of photonic nanojet generated by dielectric microsphere for laser nanojet SNOM
Author(s): Jing Jing Wang; David McCloskey; John F. Donegan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A new concept of “photonic nanojet” SNOM is proposed in this paper and the system is based on a dielectric microsphere which is mounted on a cantilever. The dielectric microsphere works as a superlens to focus the laser energy into a small volume with subwavelength spatial resolution. The numerical simulation by using Finite Element Method (FEM) has been done to optimize the parameters of the photonic nanojet of dielectic microsphere for “photonic nanojet” SNOM. The microspheres with different diameters have been investigated numerically and the results show that bigger microspheres produce higher intensity “photonic nanojets”. The simulation result on the interaction between a silicon cylinder and a photonic nanojet reveals that a “hot spot” is formed inside the silicon cylinder and is confined into a small volume. Therefore a new area on high spatial resolution spectral analyzing for nanostructures is in prospect.

Paper Details

Date Published: 15 November 2011
PDF: 6 pages
Proc. SPIE 8321, Seventh International Symposium on Precision Engineering Measurements and Instrumentation, 83213Z (15 November 2011); doi: 10.1117/12.905769
Show Author Affiliations
Jing Jing Wang, Trinity College Dublin (Ireland)
David McCloskey, Trinity College Dublin (Ireland)
John F. Donegan, Trinity College Dublin (Ireland)


Published in SPIE Proceedings Vol. 8321:
Seventh International Symposium on Precision Engineering Measurements and Instrumentation
Kuang-Chao Fan; Man Song; Rong-Sheng Lu, Editor(s)

© SPIE. Terms of Use
Back to Top