Share Email Print
cover

Proceedings Paper

The research of data acquisition system for Raman spectrometer
Author(s): Xiao Cui; Pan Guo; Yinchao Zhang; Siying Chen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Raman spectrometer has been widely used as an identification tool for analyzing material structure and composition in many fields. However, Raman scattering echo signal is very weak, about dozens of photons at most in one laser plus signal. Therefore, it is a great challenge to design a Raman spectrum data acquisition system which could accurately receive the weak echo signal. The system designed in this paper receives optical signals with the principle of photon counter and could detect single photon. The whole system consists of a photoelectric conversion module H7421-40 and a photo counting card including a field programmable gate array (FPGA) chip and a PCI9054 chip. The module H7421-40 including a PMT, an amplifier and a discriminator has high sensitivity on wavelength from 300nm to 720nm. The Center Wavelength is 580nm which is close to the excitation wavelength (532nm), QE 40% at peak wavelength, Count Sensitivity is 7.8*105(S-1PW-1) and Count Linearity is 1.5MHZ. In FPGA chip, the functions are divided into three parts: parameter setting module, controlling module, data collection and storage module. All the commands, parameters and data are transmitted between FPGA and computer by PCI9054 chip through the PCI interface. The result of experiment shows that the Raman spectrum data acquisition system is reasonable and efficient. There are three primary advantages of the data acquisition system: the first one is the high sensitivity with single photon detection capability; the second one is the high integrated level which means all the operation could be done by the photo counting card; and the last one is the high expansion ability because of the smart reconfigurability of FPGA chip.

Paper Details

Date Published: 30 November 2011
PDF: 11 pages
Proc. SPIE 8201, 2011 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems, 82011C (30 November 2011); doi: 10.1117/12.904787
Show Author Affiliations
Xiao Cui, Beijing Institute of Technology (China)
Pan Guo, Beijing Institute of Technology (China)
Yinchao Zhang, Beijing Institute of Technology (China)
Siying Chen, Beijing Institute of Technology (China)


Published in SPIE Proceedings Vol. 8201:
2011 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems
Xinyong Dong; Xiaoyi Bao; Perry Ping Shum; Tiegen Liu, Editor(s)

© SPIE. Terms of Use
Back to Top