Share Email Print

Proceedings Paper

An extended analytical model to simulate an optical coherence tomography systems with a quasi-stationary optical delay line
Author(s): Paul Jansz; Steven Richardson; Graham Wild; Steven Hinckley
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The use of Optical Coherence Tomography (OCT) in early cancer detection is still under development. While the specificity and precision of the technique has improved, the development of affordable, portable OCT configurations is important for increased clinical access by general practitioners. To this end, a proposed microphotonic time domain (TD) OCT system is being developed, based on a liquid crystal array and a microphotonic stepped mirror structure. In order to characterize the practicality of this system and its performance compared to other optical delay line (ODL) and OCT configurations, a previously demonstrated analytical simulation model has now been extended to retrieve from the interferogram, depth profiles and reflectivities for better strata OCT definition. Based on a Michelson interferometer configuration, the model allows user definition of the broadband light source, the sample's characteristics and the ODL configuration. User defined sample characteristics include the number, thickness and reflectivities of layers. The purpose of the forwards model was to compare the conventional moving ODL reference arms with their quasi-stationary and stationary alternatives. The primary goal of the current investigation is to determine the efficacy of the backward fitting model (BFM) that uses a genetic algorithm to iteratively optimize solutions for the layer thickness and layer reflectivities for a given simulated interferogram. The genetic algorithm does retrieve the depth and reflectance of the layers identified in the interferogram, improving in precision and accuracy with each generation. The BFM can deconvolve interferograms produced using different types of ODL, with the prospect of improving the proposed discrete-step quasistationary optical delay line functionality.

Paper Details

Date Published: 23 December 2011
PDF: 13 pages
Proc. SPIE 8204, Smart Nano-Micro Materials and Devices, 82043G (23 December 2011); doi: 10.1117/12.903280
Show Author Affiliations
Paul Jansz, Edith Cowan Univ. (Australia)
Steven Richardson, Edith Cowan Univ. (Australia)
Graham Wild, Edith Cowan Univ. (Australia)
Steven Hinckley, Edith Cowan Univ. (Australia)

Published in SPIE Proceedings Vol. 8204:
Smart Nano-Micro Materials and Devices
Saulius Juodkazis; Min Gu, Editor(s)

© SPIE. Terms of Use
Back to Top