Share Email Print
cover

Proceedings Paper

Technology development of UAV recovery system based on laser detection
Author(s): Zhi-wei Zhou; Hua Lv
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The recovery technology of unmanned aerial vehicle (UAV) is one of the difficulties of UAV development. This paper presents an automatic UAV recovery guide system, which is based on laser detection technology. The guide system overcomes the problem that the small-sized UAV is not suitable for accurate-point recovery. Comparing to traditional recovery system, this system has some advantage, such as high precision, round-the-clock, flexible and easy testing. Especially, it improved the application level of UAV recovery system with corresponding orientation guide model and accurate orientation tracking technology. High requirements are needed for UAV near field distance measurement with this method. This paper provides a method for UAV close quarters navigation based on laser detection technology. It is a new application for computer vision and photoelectric technology, with fast safe secret and nil interference. UAV recovery system can lead the UAV to tackle net safely. According to current UAV technology development, using laser tracking as terminal guide sensor measure equipment is feasible. The distribution of UAV collision network callback system put the laser recovery guide system behind the tackle net. When the UAV enter the callback phase, laser call back system made the UAV slide down follow the direct orbit by way of searching tracking and orientation. The UAV recovery system setups biaxial automatic turntable, measure the horizontal angle and pitch angle change, provide the deviation of current flight path and destine flight path, also provides the distance information between UAV recovery system by the way of laser measurement. This thesis analyzes the feasibility of this technology, provides the workflow of the UAV when entering the call back process. This paper also presents the correction method of laser error. The simulation result shows this distance measure system can lead the UAV call back safely.

Paper Details

Date Published: 22 August 2011
PDF: 6 pages
Proc. SPIE 8192, International Symposium on Photoelectronic Detection and Imaging 2011: Laser Sensing and Imaging; and Biological and Medical Applications of Photonics Sensing and Imaging, 81924H (22 August 2011); doi: 10.1117/12.902697
Show Author Affiliations
Zhi-wei Zhou, Tianjin Jinhang Institute of Technical Physics (China)
Hua Lv, Tianjin Jinhang Institute of Technical Physics (China)


Published in SPIE Proceedings Vol. 8192:
International Symposium on Photoelectronic Detection and Imaging 2011: Laser Sensing and Imaging; and Biological and Medical Applications of Photonics Sensing and Imaging
Farzin Amzajerdian; Weibiao Chen; Chunqing Gao; Tianyu Xie, Editor(s)

© SPIE. Terms of Use
Back to Top