Share Email Print
cover

Proceedings Paper

MRF with adjustable pH
Author(s): Stephen D. Jacobs
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Deterministic final polishing of high precision optics using sub-aperture processing with magnetorheological finishing (MRF) is an accepted practice throughout the world. A wide variety of materials can be successfully worked with aqueous (pH 10), magnetorheological (MR) fluids, using magnetic carbonyl iron (CI) and either ceria or nanodiamond nonmagnetic abrasives. Polycrystalline materials like zinc sulfide (ZnS) and zinc selenide (ZnSe) are difficult to polish at pH 10 with MRF, due to their grain size and the relatively low stiffness of the MR fluid lap. If microns of material are removed, the grain structure of the material begins to appear. In 2005, Kozhinova et al. (Appl. Opt. 44 4671-4677) demonstrated that lowering pH could improve MRF of ZnS. However, magnetic CI particle corrosion rendered their low pH approach unstable and unsuitable for commercial implementation. In 2009, Shafrir et al. described a sol-gel coating process for manufacturing a zirconia-coated CI particle that protects the magnetic core from aqueous corrosion (Appl. Opt .48 6797-6810). The coating process produces free nanozirconia polishing abrasives during the coating procedure, thereby creating an MR polishing powder that is "self-charged" with the polishing abrasive. By simply adding water, it was possible to polish optical glasses and ceramics with good stability at pH 8 for three weeks. The development of a corrosion resistant, MR polishing powder, opens up the possibility for polishing additional materials, wherein the pH may be adjusted to optimize effectiveness. In this paper we describe the CI coating process, the characterization of the coated powder, and procedures for making stable MR fluids with adjustable pH, giving polishing results for a variety of optical glasses and crystalline ceramics.

Paper Details

Date Published: 22 September 2011
PDF: 9 pages
Proc. SPIE 8169, Optical Fabrication, Testing, and Metrology IV, 816902 (22 September 2011); doi: 10.1117/12.902235
Show Author Affiliations
Stephen D. Jacobs, Univ. of Rochester (United States)


Published in SPIE Proceedings Vol. 8169:
Optical Fabrication, Testing, and Metrology IV
Angela Duparré; Roland Geyl, Editor(s)

© SPIE. Terms of Use
Back to Top