Share Email Print
cover

Proceedings Paper

Experimental study on resonator micro-optic gyroscope
Author(s): Meng Zhao; Bang-ren Shi; Chen Chen; Li-jun Guo; Rong Zhang; Qiu-e Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Resonator optic gyroscope (ROG) based on Sagnac effect has been investigated over the past years and developed as an attractive device for many applications. Resonator micro-optic gyroscope (R-MOG) with an only several-cm-long ring on a wafer is a promising candidate for the new generation inertial rotation sensor. Using micro machining process, R-MOG was manufactured on the silicon or LiNbO3 wafer by etching passive optical ring resonator devices. It has great advantages by realizing the minitype. R-MOG is a kind of optic gyroscope by detecting the resonance frequency difference of the clockwise and counterclockwise resonance to measure the angular velocity. The Sagnac effect is extremely weak, so the detection method has been the key point in researching R-MOG. Using the multi-beam superposition principle, we theoretically analyzed the signal detection scheme based on laser frequency modulation and experimentally investigated the equivalent open-loop signals of a R-MOG chip. The passive ring resonator (PRR), the core component of R-MOG, was composed of a ring waveguide with a radius of 2cm and an optical coupler with the coupling ratio of 12%. The resonance curve showed that the free spectral range (FSR), full width at half maximum (FWHM) and fineness were 3.0378GHz, 74.09MHz and 41, respectively. In the equivalent open-loop experiment, the counterclockwise (CCW) light frequency was locked to its resonant point, and the clockwise (CW) optical frequency changed around the CW resonant point. The experimental results illustrated that the sensitivity of the R-MOG was 6.15 rad/s.

Paper Details

Date Published: 8 September 2011
PDF: 7 pages
Proc. SPIE 8191, International Symposium on Photoelectronic Detection and Imaging 2011: Sensor and Micromachined Optical Device Technologies, 81911N (8 September 2011); doi: 10.1117/12.900776
Show Author Affiliations
Meng Zhao, Changchun Univ. of Science and Technology (China)
Bang-ren Shi, Changchun Univ. of Science and Technology (China)
Chen Chen, Changchun Univ. of Science and Technology (China)
Li-jun Guo, Changchun Univ. of Science and Technology (China)
Rong Zhang, Changchun Univ. of Science and Technology (China)
Qiu-e Zhang, Changchun Univ. of Science and Technology (China)


Published in SPIE Proceedings Vol. 8191:
International Symposium on Photoelectronic Detection and Imaging 2011: Sensor and Micromachined Optical Device Technologies
Yuelin Wang; Huikai Xie; Yufeng Jin, Editor(s)

© SPIE. Terms of Use
Back to Top