Share Email Print
cover

Proceedings Paper

Research on an Al\SiNx bi-material thermal-mechanical uncooled infrared FPA pixel
Author(s): Xia Zhang; Da-cheng Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

AlSiNx bi-material thermal strain structure is used in uncooled optic readout infrared focal plane array (UOR IR FPA) pixel based on Micro-Electro-Mechanical Systems (MEMS) technology. In this paper, the problems that the AlSiNxstructure prevents FPA pixel scaling down and fill factor improving, and the Au reflection layer of the pixel leads to larger readout light energy loss are analyzed. The feasibility of AlSiNx instead of AlSiNx in the UOR IR FPA fabrication is researched in detail. The theoretical analyzing and simulation results demonstrate that, with optimized thicknesses and their matching designing of SiNx and Al, the thermal-mechanical response of AlSiNx bi-material structure is improved to 1.8 times and the intensity of optic readout signal is improved to about 2 times compared with AuSiNAlSiNx one.

Paper Details

Date Published: 8 September 2011
PDF: 6 pages
Proc. SPIE 8193, International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Infrared Imaging and Applications, 81932M (8 September 2011); doi: 10.1117/12.900491
Show Author Affiliations
Xia Zhang, Communication Univ. of China (China)
Da-cheng Zhang, Peking Univ. (China)


Published in SPIE Proceedings Vol. 8193:
International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Infrared Imaging and Applications

© SPIE. Terms of Use
Back to Top