Share Email Print
cover

Proceedings Paper

Goodness-of-fit measures: what do they tell about vegetation variable retrieval performance from Earth observation data
Author(s): Katja Richter; Tobias B. Hank; Clement Atzberger; Wolfram Mauser
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The capability of models to predict vegetation biophysical variables is usually evaluated by means of one or several goodness-of-fit measures, ranging from absolute error indices (e.g. the root mean square error, RMSE) over correlation based measures (e.g. coefficient of determination, R2) to a group of dimensionless evaluation indices (e.g. relative RMSE). Hence, the greatest difficulty for the readers is the lack of comparability between the different models' accuracies. Therefore, the objective of our study was to provide an overview about the quantitative assessment of biophysical variable retrieval performance. Furthermore, we aimed to suggest an optimal set of statistical measures. This optimum set of statistics should be insensitive to the magnitude of values, range and outliers. For this purpose, a literature review was carried out, summarizing the statistical measures that have been used to evaluate model performances. Followed by this literature review and supported by some exemplary datasets, a range of statistical measures was calculated and their interrelationships analyzed. From the results of the literature review and the test analyses, we recommend an optimum statistic set, including RMSE, R², the normalized RMSE and some other indicators. Using at least the recommended statistics, comparability of model prediction accuracies is guaranteed. If applied, this will enable a better intercomparison of scientific results urgently needed in times of increasing data availability for current and upcoming EO missions.

Paper Details

Date Published: 7 October 2011
PDF: 11 pages
Proc. SPIE 8174, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII, 81740R (7 October 2011); doi: 10.1117/12.897980
Show Author Affiliations
Katja Richter, Ludwig-Maximilians-Univ. München (Germany)
Tobias B. Hank, Ludwig-Maximilians-Univ. München (Germany)
Clement Atzberger, Univ. of Natural Resources and Life Sciences (Austria)
Wolfram Mauser, Ludwig-Maximilians-Univ. München (Germany)


Published in SPIE Proceedings Vol. 8174:
Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII
Christopher M. U. Neale; Antonino Maltese, Editor(s)

© SPIE. Terms of Use
Back to Top