Share Email Print
cover

Proceedings Paper

Thermal stress failure criteria for a structural epoxy
Author(s): Patrice Côté; Nichola Desnoyers
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Representative failure data for structural epoxies can be very difficult to find for the optomechanical engineer. Usually, test data is only available for shear configuration at room temperature and fast pull rate. On the other hand, the slowly induced stress at extreme temperature is for many optical systems the worse-case scenario. Since one of the most referenced epoxy for optical assembly is the 3M™ Scotch-Weld™ Epoxy Adhesive EC-2216 B/A Gray, better understanding its behavior can benefit a broad range of applications. The objective of this paper is two-fold. First, review data for critical parameters such as Young's modulus and coefficient of thermal expansion. Secondly, derive failure criteria from correlation between a thermal stress experiment and a finite element model. Instead of pulling out a standard tensile specimen, it is proposed to test thin bondline geometry to replicate an optical device usage. Four test plates are assembled at the Institut National d'Optique (INO) in Quebec City, Canada with bondlines of 50 μm and 133 μm. To detect the failure of the epoxy, the low level vibration signature of a cantilever Invar plate is monitored as temperature changes. Following the finite element analysis, a failure criterion is found to better match the experimental results than generic lap shear data.

Paper Details

Date Published: 24 September 2011
PDF: 12 pages
Proc. SPIE 8125, Optomechanics 2011: Innovations and Solutions, 81250K (24 September 2011); doi: 10.1117/12.893832
Show Author Affiliations
Patrice Côté, INO (Canada)
Nichola Desnoyers, INO (Canada)


Published in SPIE Proceedings Vol. 8125:
Optomechanics 2011: Innovations and Solutions
Alson E. Hatheway, Editor(s)

© SPIE. Terms of Use
Back to Top