Share Email Print
cover

Proceedings Paper

Laser microbeam - kinetic studies combined with molecule - structures reveal mechanisms of DNA repair
Author(s): B. Altenberg; K. O. Greulich
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Kinetic studies on double strand DNA damages induced by a laser microbeam have allowed a precise definition of the temporal order of recruitment of repair molecules. The order is KU70 / KU80 - XRCC4 --NBS1 -- RAD51. These kinetic studies are now complemented by studies on molecular structures of the repair proteins, using the program YASARA which does not only give molecular structures but also physicochemical details on forces involved in binding processes. It turns out that the earliest of these repair proteins, the KU70 / KU80 heterodimer, has a hole with high DNA affinity. The next molecule, XRCC4, has a body with two arms, the latter with extremely high DNA affinity at their ends and a binding site for Ligase 4. Together with the laser microbeam results this provides a detailed view on the early steps of DNA double strand break repair. The sequence of DNA repair events is presented as a movie.

Paper Details

Date Published: 9 September 2011
PDF: 8 pages
Proc. SPIE 8097, Optical Trapping and Optical Micromanipulation VIII, 80970D (9 September 2011); doi: 10.1117/12.893652
Show Author Affiliations
B. Altenberg, European Molecular Biology Lab. (Germany)
K. O. Greulich, Fritz Lipmann Institute (Germany)


Published in SPIE Proceedings Vol. 8097:
Optical Trapping and Optical Micromanipulation VIII
Kishan Dholakia; Gabriel C. Spalding, Editor(s)

© SPIE. Terms of Use
Back to Top