Share Email Print

Proceedings Paper

Ab initio engineering of Fano resonances
Author(s): Benjamin Gallinet; Olivier J. F. Martin
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this work, we pave the route towards the engineering of strong and spectrally sharp Fano resonances in plasmonic nanostructures and derive analytical formulas for their line shape as a function of their electromagnetic response. Contrary to the original work of Fano, the formalism proposed here includes losses in the materials composing the system. As a result, a more general formula is obtained for the response of the system and general conclusions for the determination of the resonance parameters are drawn, in particular on its width and asymmetry. Using a surface integral simulation technique for electromagnetic scattering on three-dimensional individual and periodic nanostructures, we numerically validate our model for structures that are currently under extensive investigation in the plasmonic and metamaterial communities. The insights into the physical comprehension of Fano resonances gained this way will be of great interest for the design of plasmonic sensing platforms and metamaterials.

Paper Details

Date Published: 20 September 2011
PDF: 7 pages
Proc. SPIE 8096, Plasmonics: Metallic Nanostructures and Their Optical Properties IX, 80961R (20 September 2011); doi: 10.1117/12.893631
Show Author Affiliations
Benjamin Gallinet, Ecole Polytechnique Fédérale de Lausanne (Switzerland)
Olivier J. F. Martin, Ecole Polytechnique Fédérale de Lausanne (Switzerland)

Published in SPIE Proceedings Vol. 8096:
Plasmonics: Metallic Nanostructures and Their Optical Properties IX
Mark I. Stockman, Editor(s)

© SPIE. Terms of Use
Back to Top