Share Email Print
cover

Proceedings Paper

The conservation of light's energy, mass, and momentum
Author(s): Juliana H. J. Mortenson
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

An advance in the foundations of quantum mechanics was presented at the previous "Nature of Light" meeting which brings new insights to the conservation of light's energy, mass and momentum. Those discoveries suggest that the "photon" is a time-based collection of sub-photonic elementary light particles. Incorporation of this new understanding into quantum mechanics has allowed the determination of universal constants for the energy, mass, and momentum of light. The energy constant for light is 6.626 X 10-34 J/osc, meaning the energy of a single oscillation of light is constant irrespective of the light's frequency or wavelength. Likewise, the mass and momentum of a single oscillation of light are constant, regardless of changes to either time or space. A realistic understanding of the conservation of energy, mass and momentum for both matter and light in a single conservation law is now possible. When a body with mass absorbs or emits light, its energy, mass and momentum change in quantized amounts according to the relationship: Δ E = Nh~ = Nm0c2 = Nρ0c where "N" is the number of oscillations absorbed absorbed or emitted by the body and h~, m0, and ρ0 are the constant energy, mass and momentum of an oscillation. Implications extend from general relativity and gravity to space sails and light driven nanomotors.

Paper Details

Date Published: 29 September 2011
PDF: 14 pages
Proc. SPIE 8121, The Nature of Light: What are Photons? IV, 81210Y (29 September 2011); doi: 10.1117/12.893531
Show Author Affiliations
Juliana H. J. Mortenson, General Resonance, LLC (United States)


Published in SPIE Proceedings Vol. 8121:
The Nature of Light: What are Photons? IV
Chandrasekhar Roychoudhuri; Andrei Yu. Khrennikov; Al F. Kracklauer, Editor(s)

© SPIE. Terms of Use
Back to Top