Share Email Print
cover

Proceedings Paper

Si/silicon nanowire/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) heterojunction solar cells
Author(s): Hong-Jhang Syu; Shu-Chia Shiu; Ching-Fuh Lin
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Conventional manufacturing processes of solar cells, including epitaxy, diffusion, deposition and dry etching, are high cost and high power consumption. To save energy and reduce expenses, we use organic material, silicon nanostructure and solution process. The devices structure is n-type bulk Si (n-Si)/n-type silicon nanowires (n- SiNWs)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) heterostructure. The active region includes n-Si and n-SiNW arrays, promising the property of ultra low reflection for high light absorption. In this work, SiNWs of only a-few hundred nanometers could lower the reflectance to below 5%. In addition, an organic material - PEDOT:PSS, instead of p-type doping, is introduced to form a p-n junction with n-Si/n-SiNWs for separating the electron-hole pairs. The use of PEDOT:PSS can also passivate the surface defects of n-SiNWs. N-type SiNW arrays are made by aqueous etching process. The etchant contains Ag+ and HF etching vertically to the 1-10 Ω-cm Si (100) wafers. After etching and removing residual Ag and SiO2 by nitric acid and diluted HF successively, n-SiNW arrays existed on either surfaces of n-Si with very dark color; then Ti and Ag were evaporated on n-Si to be a cathode. Finally, nanowires of n-Si/n-SiNWs were stuck on the PEDOT:PSS that were spin-coated on the ITO coated glass to form a core-sheath heterojunction. The performance and quantum efficiencies (QE) were measured. The short circuit current density and power conversion efficiency are 27.46 mA/cm2 and 8.05%, respectively, which are higher than other solar cells containing SiNWs. The external and internal QE are beyond 50% and 60% in visible range, respectively.

Paper Details

Date Published: 21 September 2011
PDF: 6 pages
Proc. SPIE 8111, Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion II, 81110W (21 September 2011); doi: 10.1117/12.893353
Show Author Affiliations
Hong-Jhang Syu, National Taiwan Univ. (Taiwan)
Shu-Chia Shiu, National Taiwan Univ. (Taiwan)
Ching-Fuh Lin, National Taiwan Univ. (Taiwan)


Published in SPIE Proceedings Vol. 8111:
Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion II
Loucas Tsakalakos, Editor(s)

© SPIE. Terms of Use
Back to Top