Share Email Print
cover

Proceedings Paper

An optical manometer-on-a-chip
Author(s): Yuhang Jin; Kenneth B. Crozier
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The rapid development of microfluidic devices in recent years has led to a huge number of applications in chemistry, biology and interdisciplinary areas. This is because they act as miniaturized platforms in which sorting, mixing, reaction and measurement can be achieved in a precise and rapid manner. Being able to both understand and measure the pressure of fluids inside these devices is very important, especially in the cases where multiphase flows are involved. For example, certain advanced micromixing technologies demand accurate evaluations of bubble-induced extra pressure, since the pressure contribution from one bubble is likely to impact the velocity and residence time of others, affecting the mixing efficiency and quality in a complicated manner. Similarly, in some microfluidics-based biochemical analysis, extra pressure brought about by droplets is a critical factor in the design of on-chip pumping, as high throughput experiments involving continuous supply of large numbers of droplets often require a considerable enhancement in the pumping pressure necessary to maintain the droplet flow3. Last, state-of-the-art microfluidic logic devices rely heavily on the pressure distribution inside the channels, which automatically controls the paths of each droplet in the microfluidic network and as a result determines the "on" and "off" of each switch. A few techniques to measure pressure change or pressure drop in microfluidic channels have been developed. Examples include connecting the device to commercially available pressure sensors and comparing pressures of different areas by analyzing the position of fluid-fluid interface. However, all of those methods have intrinsic drawbacks in one or more aspects that considerably limit their applications. A significant one is that they are primarily aiming at measuring or comparing pressures over relatively long channels (~10 mm), and are hence only designed to work in the highpressure range, i.e. to detect a pressure change on the order of tens or hundreds of Pascals. Moreover, the long channels make it rather challenging to look into the detailed dynamics of pressure variations caused by inhomogeneous emulsions, since such a long section invariably contains multiple elements, for instance droplets, of the emulsion flow, and the measurements average out the behavior of one single element. Consequently, to further reveal the characteristics of flows in microfluidics, it is highly desirable for a pressure measurement device to work in the low-pressure range, and to resolve pressure changes "locally", i.e. within small spatial regions.

Paper Details

Date Published: 9 September 2011
PDF: 9 pages
Proc. SPIE 8097, Optical Trapping and Optical Micromanipulation VIII, 80971U (9 September 2011); doi: 10.1117/12.893124
Show Author Affiliations
Yuhang Jin, Harvard Univ. (United States)
Kenneth B. Crozier, Harvard Univ. (United States)


Published in SPIE Proceedings Vol. 8097:
Optical Trapping and Optical Micromanipulation VIII
Kishan Dholakia; Gabriel C. Spalding, Editor(s)

© SPIE. Terms of Use
Back to Top