Share Email Print
cover

Proceedings Paper

Large stable aluminum optics for aerospace applications
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Aluminum mirrors offer the advantages of lower cost, shorter fabrication time, more rugged mounting, and same material athermalization when compared to classical glass mirrors. In the past these advantages were offset by controversial dimensional stability and high surface scatter, limiting applications to IR systems. Raytheon developed processes to improve long term stability, and reduce surface scatter. Six 380 mm aperture aluminum mirrors made using these processes showed excellent stability, with figure changes of less than 0.01 wave RMS(1 wave = 633 nm) when cycled 10 times between -51 and +71 deg. C. The VQ process developed at ELCAN reduces surface scatter in bare aluminum mirrors to below 20 angstroms RMS, and has been used in thousands of production mirrors up to 300 mm aperture. These processes were employed in the fabrication of two lightweight single arch 600 mm aluminum mirrors. The two mirrors were produced in four months, with a mounted surface figure of 0.22 waves RMS and surface roughness of 20 angstroms. Mounted fundamental frequency was 218 Hz, and no figure distortion was observed at preload levels four times higher than design. Subsequently the mirrors performed well when subjected to severe environmental loadings in a Raytheon test system. This technology is being extended to ultra-lightweight sandwich mirrors, which are competitive with other material technologies used in advanced aerospace applications such as high-altitude UAV surveillance systems and satellite optics.

Paper Details

Date Published: 24 September 2011
PDF: 13 pages
Proc. SPIE 8125, Optomechanics 2011: Innovations and Solutions, 81250T (24 September 2011); doi: 10.1117/12.892039
Show Author Affiliations
Daniel Vukobratovich, Raytheon Missile Systems (United States)
John P. Schaefer, Raytheon Network Centric Systems (United States)


Published in SPIE Proceedings Vol. 8125:
Optomechanics 2011: Innovations and Solutions
Alson E. Hatheway, Editor(s)

© SPIE. Terms of Use
Back to Top