Share Email Print
cover

Proceedings Paper

Current trends in gamma radiation detection for radiological emergency response
Author(s): Sanjoy Mukhopadhyay; Paul Guss; Richard Maurer
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of inter-disciplinary research and development has taken place-techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation-the so-called second line of defense.

Paper Details

Date Published: 19 December 2011
PDF: 9 pages
Proc. SPIE 8144, Penetrating Radiation Systems and Applications XII, 81440K (19 December 2011); doi: 10.1117/12.891963
Show Author Affiliations
Sanjoy Mukhopadhyay, National Security Technologies, LLC (United States)
Paul Guss, National Security Technologies, LLC (United States)
Richard Maurer, National Security Technologies, LLC (United States)


Published in SPIE Proceedings Vol. 8144:
Penetrating Radiation Systems and Applications XII
Gary P Grim; Richard C. Schirato, Editor(s)

© SPIE. Terms of Use
Back to Top