Share Email Print

Proceedings Paper

Fourier transforms by white-light interferometry: Michelson stellar interferometer fringes
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The white-light compensated rotational shear interferometer (coherence interferometer) was developed in an effort to study the spatial frequency content of passively illuminated white-light scenes in real-time and to image sources of astronomical interest at high spatial frequencies through atmospheric turbulence. This work was inspired by Professor Goodman's studies of the image formation properties of coherent (laser) illuminated transparencies. We discovered that real-time image processing is possible using white-light interferometry. The concept of a quasimonoplanatic approximation is introduced as a parallel to the quasimonochromatic approximation needed to describe the theory of Fourier transform spectrometers. This paper describes the coherence interferometer and reviews its image formation properties under the conditions of quasimonoplanacity and describes its development and its applications to physical optics, optical processing and astrophysics including the search for exoplanets.

Paper Details

Date Published: 20 September 2011
PDF: 10 pages
Proc. SPIE 8122, Tribute to Joseph W. Goodman, 812206 (20 September 2011); doi: 10.1117/12.890537
Show Author Affiliations
James B. Breckinridge, California Institute of Technology (United States)
College of Optical Sciences, Univ. of Arizona (United States)

Published in SPIE Proceedings Vol. 8122:
Tribute to Joseph W. Goodman
H. John Caulfield; Henri H. Arsenault, Editor(s)

© SPIE. Terms of Use
Back to Top