Share Email Print

Proceedings Paper

Performance of concatenated convolutional codes: coherent vs. non-coherent
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

For radio communication systems, powerful error correction codes are necessary to operate in noisy and fading channel conditions. Iterative forward error correction schemes like Turbo codes can achieve near Shannon capacity performance on memory-less channels and also perform well on correlated fading channels. The key to the excellent decoding performance of the Turbo coding systems is the BCJR algorithm in conjunction with the iterative processing of soft information. A very popular modulation technique is Differential Phase Shift Key (DPSK) which is not only a simple non-coherent modulation and demodulation technique; it is also a recursive rate one code. Combining DPSK with a single convolutional code structure as an iterative inner outer forward error correction system can provide excellent Turbo like performance. Bit Interleaved Coded Modulation with Iterative Demodulation (BICM-ID), which is a similar iterative coding system that allows full coherent processing, will be analyzed and compared to the DPSK BCJR iterative system. Monte Carlo simulation results will be shown for the Additive White Gaussian Noise (AWGN) and Rayleigh fading channels.

Paper Details

Date Published: 24 May 2011
PDF: 14 pages
Proc. SPIE 8061, Wireless Sensing, Localization, and Processing VI, 80610N (24 May 2011); doi: 10.1117/12.888307
Show Author Affiliations
Fred C. Kellerman, Harris Corp. (United States)
John W. Nieto, Harris Corp. (United States)

Published in SPIE Proceedings Vol. 8061:
Wireless Sensing, Localization, and Processing VI
Sohail A. Dianat; Michael David Zoltowski, Editor(s)

© SPIE. Terms of Use
Back to Top