Share Email Print

Proceedings Paper

Subpixel target detection and enhancement in hyperspectral images
Author(s): K. C. Tiwari; M. Arora; D. Singh
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Hyperspectral data due to its higher information content afforded by higher spectral resolution is increasingly being used for various remote sensing applications including information extraction at subpixel level. There is however usually a lack of matching fine spatial resolution data particularly for target detection applications. Thus, there always exists a tradeoff between the spectral and spatial resolutions due to considerations of type of application, its cost and other associated analytical and computational complexities. Typically whenever an object, either manmade, natural or any ground cover class (called target, endmembers, components or class) gets spectrally resolved but not spatially, mixed pixels in the image result. Thus, numerous manmade and/or natural disparate substances may occur inside such mixed pixels giving rise to mixed pixel classification or subpixel target detection problems. Various spectral unmixing models such as Linear Mixture Modeling (LMM) are in vogue to recover components of a mixed pixel. Spectral unmixing outputs both the endmember spectrum and their corresponding abundance fractions inside the pixel. It, however, does not provide spatial distribution of these abundance fractions within a pixel. This limits the applicability of hyperspectral data for subpixel target detection. In this paper, a new inverse Euclidean distance based super-resolution mapping method has been presented that achieves subpixel target detection in hyperspectral images by adjusting spatial distribution of abundance fraction within a pixel. Results obtained at different resolutions indicate that super-resolution mapping may effectively aid subpixel target detection.

Paper Details

Date Published: 20 May 2011
PDF: 11 pages
Proc. SPIE 8048, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVII, 80481T (20 May 2011); doi: 10.1117/12.887426
Show Author Affiliations
K. C. Tiwari, Indian Institute of Technology Roorkee (India)
M. Arora, Indian Institute of Technology Roorkee (India)
D. Singh, Indian Institute of Technology Roorkee (India)

Published in SPIE Proceedings Vol. 8048:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVII
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top