Share Email Print
cover

Proceedings Paper

Energy efficiency in thermal joining processes
Author(s): J. Wilden; A. Oestreicher; B. Kaya; T. Röhrich
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Rising energy costs make energy efficiency a key topic of the future for different industrial production processes. Thermal joining is widely used in the production process and causes a lot of energy lost. Both weld seam and filler material have to be heated to temperatures higher than the melting point. During the process a high amount of heat conducts into the work piece. Process efficiency and decrease of the energy consumption can be achieved through decreasing of the process temperature and the weld metal volume, respectively. To achieve these goals, material and process developments have to be carried out. These can result energy savings up to 40% are established in laser and arc welding processes. Nanotechnology is an innovative means to reduce required energy for joining processes. High energy which is necessary in the joining area can be generated in milliseconds only by using nanostructured reactive foils. Furthermore, the process velocity can reach several m/s. Due to the size effect the melting temperature of nanoparticles decreases inversely proportional to the radius. Therefore Ag nanoparticles with a diameter of 10 nm melt at about 200°C which has to be compared to micro, meso or macro sized Ag particles melting at 960°C. Filler material manufacture based on this effect allows producing metallurgical joints at very low temperatures. After the joining process the size effect disappears. This means that the reflow temperature is equal to the macroscopic melting temperature. Material and process developments offer a wide variety of opportunities to reduce the energy consumption in thermal joining processes. Especially taking advantage of nano effects to decrease the process temperature and increase the process velocity has great potential for future applications.

Paper Details

Date Published: 10 May 2011
PDF: 7 pages
Proc. SPIE 8065, SPIE Eco-Photonics 2011: Sustainable Design, Manufacturing, and Engineering Workforce Education for a Green Future, 80650Z (10 May 2011); doi: 10.1117/12.887224
Show Author Affiliations
J. Wilden, Niederrhein Univ. of Applied Sciences (Germany)
A. Oestreicher, Technische Univ. Berlin (Germany)
B. Kaya, Technische Univ. Berlin (Germany)
T. Röhrich, Technische Univ. Berlin (Germany)


Published in SPIE Proceedings Vol. 8065:
SPIE Eco-Photonics 2011: Sustainable Design, Manufacturing, and Engineering Workforce Education for a Green Future
Pierre Ambs; Dan Curticapean; Claus Emmelmann; Wolfgang Knapp; Zbigniew T. Kuznicki; Patrick P. Meyrueis, Editor(s)

© SPIE. Terms of Use
Back to Top