Share Email Print
cover

Proceedings Paper

A mass spectrometer based explosives trace detector
Author(s): Andrey Vilkov; Kaveh Jorabchi; Karl Hanold; Jack A. Syage
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this paper we describe the application of mass spectrometry (MS) to the detection of trace explosives. We begin by reviewing the issue of explosives trace detection (ETD) and describe the method of mass spectrometry (MS) as an alternative to existing technologies. Effective security screening devices must be accurate (high detection and low false positive rate), fast and cost effective (upfront and operating costs). Ion mobility spectrometry (IMS) is the most commonly deployed method for ETD devices. Its advantages are compact size and relatively low price. For applications requiring a handheld detector, IMS is an excellent choice. For applications that are more stationary (e.g., checkpoint and alternatives to IMS are available. MS is recognized for its superior performance with regard to sensitivity and specificity, which translate to lower false negative and false positive rates. In almost all applications outside of security where accurate chemical analysis is needed, MS is usually the method of choice and is often referred to as the gold standard for chemical analysis. There are many review articles and proceedings that describe detection technologies for explosives. 1,2,3,4 Here we compare MS and IMS and identify the strengths and weaknesses of each method. - Mass spectrometry (MS): MS offers high levels of sensitivity and specificity compared to other technologies for chemical detection. Its traditional disadvantages have been high cost and complexity. Over the last few years, however, the economics have greatly improved and MS is now capable of routine and automated operation. Here we compare MS and IMS and identify the strengths and weaknesses of each method. - Ion mobility spectrometry (IMS): 5 MS-ETD Screening System IMS is similar in concept to MS except that the ions are dispersed by gas-phase viscosity and not by molecular weight. The main advantage of IMS is that it does not use a vacuum system, which greatly reduces the size, cost, and complexity relative to MS. However, the trade-off is that the measurement accuracy is considerably less than MS. This is especially true for complex samples or when screening for a large number of target compounds simultaneously.

Paper Details

Date Published: 4 June 2011
PDF: 7 pages
Proc. SPIE 8018, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII, 80181G (4 June 2011); doi: 10.1117/12.886644
Show Author Affiliations
Andrey Vilkov, Syagen Technology, Inc. (United States)
Kaveh Jorabchi, Syagen Technology, Inc. (United States)
Karl Hanold, Syagen Technology, Inc. (United States)
Jack A. Syage, Syagen Technology, Inc. (United States)


Published in SPIE Proceedings Vol. 8018:
Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII
Augustus W. Fountain; Patrick J. Gardner, Editor(s)

© SPIE. Terms of Use
Back to Top