Share Email Print
cover

Proceedings Paper

Tellurite suspended nanowire surrounded with large holes for single-mode SC and THG generations
Author(s): Meisong Liao; Guanshi Qin; Xin Yan; Chitrarekha Chaudhari; Takenobu Suzuki; Yasutake Ohishi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

For a suspended nanowire, the holes surrounding the core are expected to be as large as possible to propagate the light at wavelengths as long as possible. However, the fabrication of nanowire surrounded with large holes is still a challenge so far. In this paper, a method which involves pumping positive pressure of nitrogen gas in both the cane fabrication and fiber-drawing processes, is proposed. A suspended nanowire, with a core diameter of 480 nm and an unprecedented large diameter ratio of holey region to core (DRHC) of at least 62, is fabricated in the length of several hundred meters. Owing to the large holes, the confinement loss of the suspended nanowire is insignificant when the wavelength of light propagated in it is 1700 nm. Additionally, the tube-shaped glass cladding of the suspended nanowire shifts the singlemode cutoff wavelength to 810 nm, which is much shorter than the cutoff wavelength, 1070 nm, of a naked nanowire with the same diameter. A single-mode supercontinuum (SC) generation covering a wavelength range of 900-1600 nm is obtained under 1064 nm pump pulse with the peak power as low as 24 W. A single-mode third harmonic generation (THG) is observed by this nanowire under the pump of a 1557 nm femtosecond fiber laser. This work indicates that the suspended nanowire with large holes can provide high nonlinearity together with single-mode propagation, which leads to interesting applications in compact nonlinear devices.

Paper Details

Date Published: 10 May 2011
PDF: 11 pages
Proc. SPIE 8073, Optical Sensors 2011; and Photonic Crystal Fibers V, 80732I (10 May 2011); doi: 10.1117/12.886433
Show Author Affiliations
Meisong Liao, Toyota Technological Institute (Japan)
Guanshi Qin, Toyota Technological Institute (Japan)
Xin Yan, Toyota Technological Institute (Japan)
Chitrarekha Chaudhari, Toyota Technological Institute (Japan)
Takenobu Suzuki, Toyota Technological Institute (Japan)
Yasutake Ohishi, Toyota Technological Institute (Japan)


Published in SPIE Proceedings Vol. 8073:
Optical Sensors 2011; and Photonic Crystal Fibers V
Kyriacos Kalli; Francesco Baldini; Jiri Homola; Robert A. Lieberman, Editor(s)

© SPIE. Terms of Use
Back to Top