Share Email Print
cover

Proceedings Paper

Versatile approach for frequency resolved wavefront characterization
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Spatial characterization of high harmonics (HH) and XUV coherent radiation is of paramount importance, along with its temporal characterization. For many applications it will be necessary to accurately measure the beam properties, just as it is important to know the beam characteristics for many laser experiments. For example, high harmonics and attosecond pulses are being proposed as a front-end for the next generation X-ray free electron lasers. This oscillator-amplifier-like arrangement will require well characterized high harmonic sources. On the other hand, the electromagnetic radiation carries the combined signature of underlying quantum physical processes at the molecular level and of the cooperative phase matching. For example, accurate reconstruction of the high harmonic spatial wavefront, along with its temporal profile, gives us a complete range of tools to apply to the fundamental quantum properties and dynamics associated with high harmonic generation. We present a new concept of frequency resolved wavefront characterization that is particularly suitable for characterizing XUV radiation. In keeping with tradition in the area we give it an acronym - SWORD (Spectral Wavefront Optical Reconstruction by Diffraction). Our approach is based on an analysis of the diffraction pattern of a slit situated in front of a flat-field spectrometer. As the slit is scanned, the spectrally resolved diffraction pattern is recorded. Analyzing the measured diffractogram, we can reconstruct the wavefront. The technique can be easily extended beyond the XUV spectral region. When combined with temporal characterization techniques all information about the beam can be measured.

Paper Details

Date Published: 11 February 2011
PDF: 6 pages
Proc. SPIE 7925, Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XI, 79250U (11 February 2011); doi: 10.1117/12.886304
Show Author Affiliations
Eugene Frumker, Joint Attosecond Science Lab. (Canada)
Texas A&M Univ. (United States)
Gerhard G. Paulus, Texas A&M Univ. (United States)
Friedrich-Schiller-Univ. Jena (Germany)
Hiromichi Niikura, Joint Attosecond Science Lab. (Canada)
PRESTO JST (Japan)
David M. Villeneuve, Joint Attosecond Science Lab. (Canada)
Paul B. Corkum, Joint Attosecond Science Lab. (Canada)


Published in SPIE Proceedings Vol. 7925:
Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XI
Alexander Heisterkamp; Joseph Neev; Stefan Nolte, Editor(s)

© SPIE. Terms of Use
Back to Top