Share Email Print
cover

Proceedings Paper

High-temperature microelectromechanical pressure sensors based on a SOI heterostructure for an electronic automatic aircraft engine control system
Author(s): Leonid V. Sokolov
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

There is a need of measuring distributed pressure on the aircraft engine inlet with high precision within a wide operating temperature range in the severe environment to improve the efficiency of aircraft engine control. The basic solutions and principles of designing high-temperature (to 523K) microelectromechanical pressure sensors based on a membrane-type SOI heterostructure with a monolithic integral tensoframe (MEMS-SOIMT) are proposed in accordance with the developed concept, which excludes the use of electric p-n junctions in semiconductor microelectromechanical sensors. The MEMS-SOIMT technology relies on the group processes of microelectronics and micromechanics for high-precision microprofiling of a three-dimension micromechanical structure, which exclude high-temperature silicon doping processes.

Paper Details

Date Published: 28 December 2010
PDF: 6 pages
Proc. SPIE 7544, Sixth International Symposium on Precision Engineering Measurements and Instrumentation, 75442P (28 December 2010); doi: 10.1117/12.885688
Show Author Affiliations
Leonid V. Sokolov, FSUE Institute of Aircraft Equipment (Russian Federation)


Published in SPIE Proceedings Vol. 7544:
Sixth International Symposium on Precision Engineering Measurements and Instrumentation
Jiubin Tan; Xianfang Wen, Editor(s)

© SPIE. Terms of Use
Back to Top