Share Email Print
cover

Proceedings Paper

Combined bio-inspired/evolutionary computational methods in cross-layer protocol optimization for wireless ad hoc sensor networks
Author(s): William S. Hortos
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Published studies have focused on the application of one bio-inspired or evolutionary computational method to the functions of a single protocol layer in a wireless ad hoc sensor network (WSN). For example, swarm intelligence in the form of ant colony optimization (ACO), has been repeatedly considered for the routing of data/information among nodes, a network-layer function, while genetic algorithms (GAs) have been used to select transmission frequencies and power levels, physical-layer functions. Similarly, artificial immune systems (AISs) as well as trust models of quantized data reputation have been invoked for detection of network intrusions that cause anomalies in data and information; these act on the application and presentation layers. Most recently, a self-organizing scheduling scheme inspired by frog-calling behavior for reliable data transmission in wireless sensor networks, termed anti-phase synchronization, has been applied to realize collision-free transmissions between neighboring nodes, a function of the MAC layer. In a novel departure from previous work, the cross-layer approach to WSN protocol design suggests applying more than one evolutionary computational method to the functions of the appropriate layers to improve the QoS performance of the cross-layer design beyond that of one method applied to a single layer's functions. A baseline WSN protocol design, embedding GAs, anti-phase synchronization, ACO, and a trust model based on quantized data reputation at the physical, MAC, network, and application layers, respectively, is constructed. Simulation results demonstrate the synergies among the bioinspired/ evolutionary methods of the proposed baseline design improve the overall QoS performance of networks over that of a single computational method.

Paper Details

Date Published: 20 May 2011
PDF: 15 pages
Proc. SPIE 8059, Evolutionary and Bio-Inspired Computation: Theory and Applications V, 80590Q (20 May 2011); doi: 10.1117/12.884818
Show Author Affiliations
William S. Hortos, Associates in Communications Engineering Research and Technology (United States)


Published in SPIE Proceedings Vol. 8059:
Evolutionary and Bio-Inspired Computation: Theory and Applications V
Misty Blowers; Teresa H. O'Donnell; Olga Lisvet Mendoza-Schrock, Editor(s)

© SPIE. Terms of Use
Back to Top