Share Email Print

Proceedings Paper

A hidden Markov model for multimodal biometrics score fusion
Author(s): Yufeng Zheng
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

There are strong evidences of that multimodal biometric score fusion can significantly improve human identification performance. Score level fusion usually involves score normalization, score fusion, and fusion decision. There are several types of score fusion methods, direct combination of fusion scores, classifier-based fusion, and density-based fusion. The real applications require achieving greater reliability in determining or verifying person's identity. The goal of this research is to improve the accuracy and robustness of human identification by using multimodal biometrics score fusion. The accuracy means high verification rate if tested on a closed dataset, or a high genuine accept rate under low false accept rate if tested on an open dataset. While the robustness means the fusion performance is stable with variant biometric scores. We propose a hidden Markov model (HMM) for multiple score fusion, where the biometric scores include multimodal scores and multi-matcher scores. The state probability density functions in a HHM model are estimated by Gaussian mixture model. The proposed HMM model for multiple score fusion is accurate for identification, flexible and reliable with biometrics. The proposed HMM method are tested on three NIST-BSSR1 multimodal databases and on three face-score databases. The results show the HMM method is an excellent and reliable score fusion method.

Paper Details

Date Published: 7 June 2011
PDF: 9 pages
Proc. SPIE 8064, Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2011, 80640D (7 June 2011); doi: 10.1117/12.884743
Show Author Affiliations
Yufeng Zheng, Alcorn State Univ. (United States)

Published in SPIE Proceedings Vol. 8064:
Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2011
Jerome J. Braun, Editor(s)

© SPIE. Terms of Use
Back to Top