Share Email Print
cover

Proceedings Paper

Constrain static target kinetic iterative image reconstruction for 4D cardiac CT imaging
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Iterative image reconstruction offers improved signal to noise properties for CT imaging. A primary challenge with iterative methods is the substantial computation time. This computation time is even more prohibitive in 4D imaging applications, such as cardiac gated or dynamic acquisition sequences. In this work, we propose only updating the time-varying elements of a 4D image sequence while constraining the static elements to be fixed or slowly varying in time. We test the method with simulations of 4D acquisitions based on measured cardiac patient data from a) a retrospective cardiac-gated CT acquisition and b) a dynamic perfusion CT acquisition. We target the kinetic elements with one of two methods: 1) position a circular ROI on the heart, assuming area outside ROI is essentially static throughout imaging time; and 2) select varying elements from the coefficient of variation image formed from fast analytic reconstruction of all time frames. Targeted kinetic elements are updated with each iteration, while static elements remain fixed at initial image values formed from the reconstruction of data from all time frames. Results confirm that the computation time is proportional to the number of targeted elements; our simulations suggest that <30% of elements need to be updated in each frame leading to >3 times reductions in reconstruction time. The images reconstructed with the proposed method have matched mean square error with full 4D reconstruction. The proposed method is amenable to most optimization algorithms and offers the potential for significant computation improvements, which could be traded off for more sophisticated system models or penalty terms.

Paper Details

Date Published: 7 February 2011
PDF: 7 pages
Proc. SPIE 7873, Computational Imaging IX, 78730S (7 February 2011); doi: 10.1117/12.884662
Show Author Affiliations
Adam M. Alessio, Univ. of Washington (United States)
Patrick J. La Riviere, Univ. of Chicago (United States)


Published in SPIE Proceedings Vol. 7873:
Computational Imaging IX
Charles A. Bouman; Ilya Pollak; Patrick J. Wolfe, Editor(s)

© SPIE. Terms of Use
Back to Top