Share Email Print

Proceedings Paper

Spectral ladar as a UGV navigation sensor
Author(s): Michael A. Powers; Christopher C. Davis
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We demonstrate new results using our Spectral LADAR prototype, which highlight the benefits of this sensor for Unmanned Ground Vehicle (UGV) navigation applications. This sensor is an augmentation of conventional LADAR and uses a polychromatic source to obtain range-resolved 3D spectral point clouds. These point cloud images can be used to identify objects based on combined spatial and spectral features in three dimensions and at long standoff range. The Spectral LADAR transmits nanosecond supercontinuum pulses generated in a photonic crystal fiber. Backscatter from distant targets is dispersed into 25 spectral bands, where each spectral band is independently range resolved with multiple return pulse recognition. Our new results show that Spectral LADAR can spectrally differentiate hazardous terrain (mud) from favorable driving surfaces (dry ground). This is a critical capability, since in UGV contexts mud is potentially hazardous, requires modified vehicle dynamics, and is difficult to identify based on 3D spatial signatures. Additionally, we demonstrate the benefits of range resolved spectral imaging, where highly cluttered 3D images of scenes (e.g. containing camouflage, foliage) are spectrally unmixed by range separation and segmented accordingly. Spectral LADAR can achieve this unambiguously and without the need for stereo correspondence, sub-pixel detection algorithms, or multi-sensor registration and data fusion.

Paper Details

Date Published: 1 June 2011
PDF: 15 pages
Proc. SPIE 8037, Laser Radar Technology and Applications XVI, 80371F (1 June 2011); doi: 10.1117/12.883732
Show Author Affiliations
Michael A. Powers, General Dynamics (United States)
Christopher C. Davis, Univ. of Maryland, College Park (United States)

Published in SPIE Proceedings Vol. 8037:
Laser Radar Technology and Applications XVI
Monte D. Turner; Gary W. Kamerman, Editor(s)

© SPIE. Terms of Use
Back to Top