Share Email Print
cover

Proceedings Paper

An active co-phasing imaging testbed with segmented mirrors
Author(s): Weirui Zhao; Genrui Cao
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An active co-phasing imaging testbed with high accurate optical adjustment and control in nanometer scale was set up to validate the algorithms of piston and tip-tilt error sensing and real-time adjusting. Modularization design was adopted. The primary mirror was spherical and divided into three sub-mirrors. One of them was fixed and worked as reference segment, the others were adjustable respectively related to the fixed segment in three freedoms (piston, tip and tilt) by using sensitive micro-displacement actuators in the range of 15mm with a resolution of 3nm. The method of twodimension dispersed fringe analysis was used to sense the piston error between the adjacent segments in the range of 200μm with a repeatability of 2nm. And the tip-tilt error was gained with the method of centroid sensing. Co-phasing image could be realized by correcting the errors measured above with the sensitive micro-displacement actuators driven by a computer. The process of co-phasing error sensing and correcting could be monitored in real time by a scrutiny module set in this testbed. A FISBA interferometer was introduced to evaluate the co-phasing performance, and finally a total residual surface error of about 50nm rms was achieved.

Paper Details

Date Published: 23 May 2011
PDF: 7 pages
Proc. SPIE 8044, Sensors and Systems for Space Applications IV, 80440X (23 May 2011); doi: 10.1117/12.883590
Show Author Affiliations
Weirui Zhao, Beijing Institute of Technology (China)
Genrui Cao, Beijing Institute of Technology (China)


Published in SPIE Proceedings Vol. 8044:
Sensors and Systems for Space Applications IV
Khanh D. Pham; Henry Zmuda; Joseph Lee Cox; Greg J. Meyer, Editor(s)

© SPIE. Terms of Use
Back to Top