Share Email Print

Proceedings Paper

Hyperspectral anomaly detection using sparse kernel-based ensemble learning
Author(s): Prudhvi Gurram; Timothy Han; Heesung Kwon
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper, sparse kernel-based ensemble learning for hyperspectral anomaly detection is proposed. The proposed technique is aimed to optimize an ensemble of kernel-based one class classifiers, such as Support Vector Data Description (SVDD) classifiers, by estimating optimal sparse weights. In this method, hyperspectral signatures are first randomly sub-sampled into a large number of spectral feature subspaces. An enclosing hypersphere that defines the support of spectral data, corresponding to the normalcy/background data, in the Reproducing Kernel Hilbert Space (RKHS) of each respective feature subspace is then estimated using regular SVDD. The enclosing hypersphere basically represents the spectral characteristics of the background data in the respective feature subspace. The joint hypersphere is learned by optimally combining the hyperspheres from the individual RKHS, while imposing the l1 constraint on the combining weights. The joint hypersphere representing the most optimal compact support of the local hyperspectral data in the joint feature subspaces is then used to test each pixel in hyperspectral image data to determine if it belongs to the local background data or not. The outliers are considered to be targets. The performance comparison between the proposed technique and the regular SVDD is provided using the HYDICE hyperspectral images.

Paper Details

Date Published: 20 May 2011
PDF: 9 pages
Proc. SPIE 8048, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVII, 80481C (20 May 2011); doi: 10.1117/12.883383
Show Author Affiliations
Prudhvi Gurram, U.S. Army Research Lab. (United States)
Timothy Han, The Johns Hopkins Univ. (United States)
Heesung Kwon, U.S. Army Research Lab. (United States)

Published in SPIE Proceedings Vol. 8048:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVII
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top