Share Email Print
cover

Proceedings Paper

Thermal effect of microwave antenna radiation on a generic model of thyroid gland
Author(s): Gheorghe Gavriloaia; Mariuca-Roxana Gavriloaia; Adina-Mariana Ghemigean
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The rapid diffusion of wireless communication systems has caused an increased concern for the potential detrimental effects on human health deriving from exposure to electromagnetic field. It penetrates the body and acts on all the organs, altering the cell membrane potential and the distribution of ions and dipoles. The thyroid gland is one of the most exposed vital organs and may be a target for electromagnetic radiation. This paper presents the computed temperature and specific absorption rate inside to a generic model of a human thyroid using signals radiated by an antenna operating in the 2450 MHz band and the power density levels up to 100 W/cm2. Calculations were carried out using the Finite Difference Time Domain method for the solving of two coupled differential equations, Maxwell and Pennes. The results show that the temperature can rise up to very dangerous levels, i.e., 46 °C, in a very short time. The estimated temperature distribution in the human thyroid due to exposure from microwave signals can be used to design the dangerous aria for personal working around high power emitted antenna and for medical applications.

Paper Details

Date Published: 4 December 2010
PDF: 6 pages
Proc. SPIE 7821, Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies V, 78210U (4 December 2010); doi: 10.1117/12.882298
Show Author Affiliations
Gheorghe Gavriloaia, Univ. of Pitesti (Romania)
Mariuca-Roxana Gavriloaia, Medical and Pharmaceutical Univ. of Bucharest (Romania)
Adina-Mariana Ghemigean, Medical and Pharmaceutical Univ. of Bucharest (Romania)


Published in SPIE Proceedings Vol. 7821:
Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies V

© SPIE. Terms of Use
Back to Top