Share Email Print
cover

Proceedings Paper

Development of sol-gel derived lead zirconate titanate (PZT) thin films with a nonporous Pt/Ti bottom electrode
Author(s): Qing Guo; G. Z. Cao; I. Y. Shen
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Lead Zirconate Titanate Oxide (PbZrxTi1-xO3 or PZT) thin films have been widely used in various microsensors and microactuators for their high bandwidth and sensitivity. A typical configuration is to use a Pt/Ti bi-layer as the bottom electrode. Before the PZT film is deposited, Pt/Ti bi-layer must be annealed at high temperature (e.g., 800°C) to obtain a condensed structure with a rough micro surface texture. A condensed Pt/Ti structure prevents delamination of the bottom electrode, while a rough micro surface texture ensures PZT thin films anchored firmly onto the bottom electrodes. Although the annealing process is necessary, its high temperature causes Pt/Ti bi-layer to become porous, thus degrading electrical and ferroelectric properties of the PZT thin films. In this paper, we present a non-porous Pt/Ti bottom electrode via a two-step deposition and annealing process. The first step is the traditional fabrication process that leads to a porous Pt/Ti electrode. A second round of deposition and annealing then seals the pores and strengthens the electrode. To evaluate the performance of the non-porous bottom electrode, PZT thin films with porous and non-porous bottom electrodes are fabricated simultaneously. Experimental measurements show that piezoelectric constant d33 of the PZT film increases from 10 pC/N to 20 pC/N when the bottom electrode is changed from the porous to non-porous electrode.

Paper Details

Date Published: 14 April 2011
PDF: 7 pages
Proc. SPIE 7981, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011, 79812U (14 April 2011); doi: 10.1117/12.881460
Show Author Affiliations
Qing Guo, Univ. of Washington (United States)
G. Z. Cao, Univ. of Washington (United States)
I. Y. Shen, Univ. of Washington (United States)


Published in SPIE Proceedings Vol. 7981:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011
Masayoshi Tomizuka, Editor(s)

© SPIE. Terms of Use
Back to Top