Share Email Print
cover

Proceedings Paper

Multilayered polypyrrole-gold-polyvinylidene fluoride composite actuators
Author(s): Colin F. Smith; Su Chul Yang; Timothy E. Long; Shashank Priya
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Much attention has been given to ionic electroactive devices constructed using conducting polymers due to their low voltage requirements, high strain, and similarities to natural muscle. However, the time response and output force of conducting polymer actuators has always been a limiting factor in their implementation. In this study, we report on a processing technique and parametric optimization for multilayer polypyrrole-gold-polyvinylidene fluoride (PPy- Au-PVDF) composite actuators that have the possibility of overcoming the prior problems. These actuators are operable in air, have faster time response, and are projected to generate higher force compared to that of conventional conducting polymer actuators. These improvements are made possible due to the improvement in processing conditions and novel multilayer geometry of the actuators. A five layer PPy-Au-PVDF-Au-PPy actuator operating in air with 0.5M KCl electrolyte was shown to generate deflections up to 90% of the actuator length at a rate of 50% per second.

Paper Details

Date Published: 29 March 2011
PDF: 11 pages
Proc. SPIE 7976, Electroactive Polymer Actuators and Devices (EAPAD) 2011, 797625 (29 March 2011); doi: 10.1117/12.880692
Show Author Affiliations
Colin F. Smith, Virginia Polytechnic Institute and State Univ. (United States)
Su Chul Yang, Virginia Polytechnic Institute and State Univ. (United States)
Timothy E. Long, Virginia Polytechnic Institute and State Univ. (United States)
Shashank Priya, Virginia Polytechnic Institute and State Univ. (United States)


Published in SPIE Proceedings Vol. 7976:
Electroactive Polymer Actuators and Devices (EAPAD) 2011
Yoseph Bar-Cohen; Federico Carpi, Editor(s)

© SPIE. Terms of Use
Back to Top