Share Email Print
cover

Proceedings Paper

Improved design of linear electromagnetic transducers for large-scale vibration energy harvesting
Author(s): Xiudong Tang; Lei Zuo; Teng Lin; Peisheng Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper presents the design and optimization of tubular Linear Electromagnetic Transducers (LETs) with applications to large-scale vibration energy harvesting, such as from vehicle suspensions, tall buildings or long bridges. Four types of LETs are considered and compared, namely, single-layer configuration using axial magnets, double-layer configuration using axial magnets, single-layer configuration using both axial and radial magnets, double-layer configuration using both axial and radial magnets. In order to optimize the LETs, the parameters investigated in this paper include the thickness of the magnets in axial direction and the thickness of the coils in the radial direction. Finite element method is used to analyze the axisymmetric two-dimensional magnetic fields. Both magnetic flux densities Br [T] in the radial direction and power density [W/m3] are calculated. It is found that the parameter optimization can increase the power density of LETs to 2.7 times compared with the initial design [Zuo et al, Smart Materials and Structures, v19 n4, 2010], and the double-layer configuration with both radial and axial magnets can improve the power density to 4.7 times, approaching to the energy dissipation rate of traditional oil dampers. As a case study, we investigate its application to energy-harvesting shock absorbers. For a reasonable retrofit size, the LETs with double-layer configuration and both axial and radial NdFeB magnets can provide a damping coefficient of 1138 N·s/m while harvesting 35.5 W power on the external electric load at 0.25 m/s suspension velocity. If the LET is shorten circuit, it can dissipate energy at the rate of 142.0 W, providing of a damping coefficient of 2276 N·s/m. Practical consideration of number of coil phases is also discussed.

Paper Details

Date Published: 27 April 2011
PDF: 11 pages
Proc. SPIE 7977, Active and Passive Smart Structures and Integrated Systems 2011, 79770O (27 April 2011); doi: 10.1117/12.880579
Show Author Affiliations
Xiudong Tang, Stony Brook Univ. (United States)
Lei Zuo, Stony Brook Univ. (United States)
Teng Lin, Stony Brook Univ. (United States)
Peisheng Zhang, Stony Brook Univ. (United States)


Published in SPIE Proceedings Vol. 7977:
Active and Passive Smart Structures and Integrated Systems 2011
Mehrdad N. Ghasemi-Nejhad, Editor(s)

© SPIE. Terms of Use
Back to Top