Share Email Print

Proceedings Paper

Bioinspired vision sensors with hyperacuity
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Musca domestica, the common house fly, possesses a powerful vision system that exhibits features such as fast, analog, parallel operation and motion hyperacuity -- the ability to detect the movement of objects at far better resolution than predicted by their photoreceptor spacing. Researchers at the Wyoming Information, Signal Processing, and Robotics (WISPR) Laboratory have investigated these features for over a decade to develop an analog sensor inspired by the fly. Research efforts have been divided into electrophysiology; mathematical, optical and MATLAB based sensor modeling; physical sensor development; and applications. This paper will provide an in depth review of recent key results in some of these areas including development of a multiple, light adapting cartridge based sensor constructed on both a planar and co-planar surface using off-the-shelf components. Both a photodiode-based approach and a fiber based sensor will be discussed. Applications in UAV obstacle avoidance, long term building monitoring and autonomous robot navigation are also discussed.

Paper Details

Date Published: 23 March 2011
PDF: 15 pages
Proc. SPIE 7975, Bioinspiration, Biomimetics, and Bioreplication, 797508 (23 March 2011); doi: 10.1117/12.880474
Show Author Affiliations
Steven F. Barrett, Univ. of Wyoming (United States)
Cameron H. G. Wright, Univ. of Wyoming (United States)

Published in SPIE Proceedings Vol. 7975:
Bioinspiration, Biomimetics, and Bioreplication
Raúl J. Martín-Palma; Akhlesh Lakhtakia, Editor(s)

© SPIE. Terms of Use
Back to Top