Share Email Print
cover

Proceedings Paper

Lifetime of dielectric elastomer stack actuators
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Dielectric elastomer stack actuators (DESA) are well suited for the use in mobile devices, fluidic applications and small electromechanical systems. Despite many improvements during the last years the long term behavior of dielectric elastomer actuators in general is not known or has not been published. The first goal of the study is to characterize the overall lifetime under laboratory conditions and to identify potential factors influencing lifetime. For this we have designed a test setup to examine 16 actuators at once. The actuators are subdivided into 4 groups each with a separate power supply and driving signal. To monitor the performance of the actuators driving voltage and current are measured continuously and additionally, the amplitude of the deformations of each actuator is measured sequentially. From our first results we conclude that lifetime of these actuators is mainly influenced by the contact material between feeding line and multilayer electrodes. So far, actuators themselves are not affected by long term actuation. With the best contact material actuators can be driven for more than 2700 h at 200 Hz with an electrical field strength of 20 V/μm. This results in more than 3 billion cycles. Actually, there are further actuators driven at 10 Hz for more than 4000 hours and still working.

Paper Details

Date Published: 28 March 2011
PDF: 9 pages
Proc. SPIE 7976, Electroactive Polymer Actuators and Devices (EAPAD) 2011, 79760P (28 March 2011); doi: 10.1117/12.878954
Show Author Affiliations
Peter Lotz, Technische Univ. Darmstadt (Germany)
Marc Matysek, Philips Research Europe (Germany)
Helmut F. Schlaak, Technische Univ. Darmstadt (Germany)


Published in SPIE Proceedings Vol. 7976:
Electroactive Polymer Actuators and Devices (EAPAD) 2011
Yoseph Bar-Cohen; Federico Carpi, Editor(s)

© SPIE. Terms of Use
Back to Top