Share Email Print
cover

Proceedings Paper

Analysis of vertical and horizontal circular C-arm trajectories
Author(s): A. Maier; J.-H. Choi; A. Keil; C. Niebler; M. Sarmiento; A. Fieselmann; G. Gold; S. Delp; R. Fahrig
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

C-arm angiography systems offer great flexibility in the acquisition of trajectories for computed tomography. Theoretically, these systems are able to scan patients while standing in an upright position. This would allow novel insights into structural changes of the human anatomy while weight bearing. However, this would require a scan on a horizontal trajectory parallel to the ground floor which is currently not supported by standard C-arm CT acquisition protocols. In this paper, we compared the standard vertical and the new horizontal scanning trajectories by analysis of the source positions and source to detector distances during the scan. We employed a C-arm calibration phantom to compute the exact scan geometry. Based on the analysis of the projection matrices, we computed the source position in 3D and the source to detector distance for each projection. We then used the calibrated scan geometries to reconstruct the calibration phantom. Based on this reconstruction in comparison to the ideal phantom geometry we also evaluated the geometric reconstruction error. As expected, both the vertical and the horizontal scan trajectories exhibit a significant C-arm "wobble". But in both kinds of trajectories, the reproducibility over several scans was comparable. We were able to reconstruct the calibration phantom with satisfactory geometric reconstruction accuracy. With a reconstruction error of 0.2 mm, we conclude that horizontal C-arm scans are possible and show properties similar to those of vertical C-arm scans. The remaining challenge is compensation for the involuntary movement of the standing subject during a weight-bearing acquisition. We investigated this using an optical tracking system and found that the average movement at the knee while standing upright for 5 seconds is between 0.42 mm and 0.54 mm, and goes up to as much as 12 mm when the subject is holding a 60° squat. This involuntary motion is much larger than the reconstruction accuracy. Hence, we expect artifacts in reconstructions to be significant for upright positions, and overwhelming in squat positions if no motion correction is applied.

Paper Details

Date Published: 16 March 2011
PDF: 8 pages
Proc. SPIE 7961, Medical Imaging 2011: Physics of Medical Imaging, 796123 (16 March 2011); doi: 10.1117/12.878502
Show Author Affiliations
A. Maier, Stanford Univ. (United States)
J.-H. Choi, Stanford Univ. (United States)
A. Keil, Stanford Univ. (United States)
C. Niebler, Friedrich-Alexander-Univ. Erlangen-Nürnberg (Germany)
M. Sarmiento, Siemens AG (Germany)
A. Fieselmann, Friedrich-Alexander-Univ. Erlangen-Nürnberg (Germany)
G. Gold, Stanford Univ. (United States)
S. Delp, Stanford Univ. (United States)
R. Fahrig, Stanford Univ. (United States)


Published in SPIE Proceedings Vol. 7961:
Medical Imaging 2011: Physics of Medical Imaging
Norbert J. Pelc; Ehsan Samei; Robert M. Nishikawa, Editor(s)

© SPIE. Terms of Use
Back to Top